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Abstract

This paper exploits spatial discontinuities in Medicare payment rates to estimate the effect
of reimbursements on primary care physicians’ choice of organizational structure. I find that a
1 percent increase in Medicare reimbursement leads to a 1.7 to 2.2 percentage point increase in
primary care doctors who practice with a small group (defined as 25 providers or fewer). This
effect is driven by changes in the tails of the practice size distribution: a 1.8 percentage point
increase in physicians who are affiliated with the smallest (1- or 2-provider) practice groups
with a corresponding decrease in physicians joining very large practices (≥ 150 providers). I
do not, however, detect any evidence of physician sorting or bunching around the boundary
in response to differential payment, supporting the underlying assumptions of my regression
discontinuity design. Accordingly, my findings suggest that Medicare pricing may be a factor
in the trend of consolidation in the physician and clinical services market.
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1 Introduction

In its role as the largest purchaser of clinical services in the United States, the Centers for Medicare
and Medicaid Services (“CMS” or “Medicare”) yields tremendous influence on physician deci-
sions through its price-setting behavior. The research considering the impact of these prices has
largely focused the effects of reimbursement on intensive-margin treatment decisions: i.e. how
physicians modify the degree of resource utilization in response to changes in prices. However, an
emerging literature has shown the impacts of Medicare payments reach much further, from tech-
nology adoption (Finkelstein, 2007; Acemoglu and Finkelstein, 2008; Clemens and Gottlieb, 2014)
to private-market price-setting (Clemens and Gottlieb, 2017).

This paper builds on this literature by examining how Medicare policy shapes the way in which
physician practices are structured. Specifically, I examine how primary care physicians change
their choice of practice structure—as indicated by the size of medical group that they are affiliated
with—in response to differential Medicare payment. The structure of physician practices is rele-
vant to both patient health and healthcare costs. Larger multispecialty practice groups may have
positive impacts on health outcomes (Epstein et al., 2010; Baker et al., 2019); however, they may
also gain bargaining power with commercial insurers, leading to higher prices, premiums, and
out-of-pocket costs in the private market (Dunn and Shapiro, 2014; Baker et al., 2014).1 Given the
size of the market for privately financed physician and clinical services ($287 billion in 2016), even
limited increases in commercial prices could have large cost ramifications.

To assess the effect of differential reimbursements on these outcomes, this paper exploits spa-
tial discontinuities in Medicare fee-for-service payments within several metropolitan areas across
the United States. Medicare has differential payments for providers located in certain “localities,”
which correspond to select metropolitan areas.2 Providers practicing outside of these metropoli-
tan areas are assigned a “Rest of State” payment rate, which is typically less generous. Using a
boundary regression discontinuity design, I exploit these sharp differences in payment to assess
the plausibly exogenous impact of different prices on providers practicing near these borders who
serve the same patient populations and face the same input costs.

I find that a 1 percent increase in Medicare reimbursement leads to a 1.7 to 2.2 percentage point
(“p.p.”) increase in the share of primary care physicians (“PCPs”) practicing in smaller medical
groups (defined as practices with 25 or fewer providers). This finding is consistent with a theoreti-
cal model of physician choice, in which doctors balance financial considerations with non-financial
preferences over practice structure. Comparative statics from this model predict that income from
more generous reimbursement allows clinicians to adopt practice structures that they find are more
suited to their non-financial tastes but that are otherwise less profitable.

To more completely understand how across-the-board changes in Medicare reimbursement af-
1Others, such as Scott et al. (2017) and Short and Ho (2019) find no effects or negative effects of vertical integration

on quality measures.
2These localities often closely follow county boundaries, though they are defined by CMS on the zip-code level. The

full list of designated payment localities can be found in Appendix Table A1
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fect the nature of medical practices, I examine how differential reimbursement influences the dis-
tribution of group sizes. Within my preferred sample, I find that the distribution on the higher-
payment side of the boundary stochastically dominates the low-payment distribution. Further
analysis underscores that the effects on group size manifest early in the distribution: in response
to Medicare reimbursement that is 1 percent more generous, the fraction of primary care doctors
practicing in the smallest (1-2 provider) groups increases by 1.8 percentage points. These effects
persist through the distribution until they are offset by reductions in PCPs affiliated with groups
of 150 or greater. Given that groups of this size are generally comprised of hospital systems or
physician groups that are affiliated with a particular hospital system, these findings suggest that
higher overall Medicare prices may decrease vertical integration in healthcare markets.

My empirical findings are robust across specifications, bandwidth choices, and sample restric-
tions. Furthermore, to perform tests of my identifying assumptions, I conduct a variety of bunching
tests across different sub-samples and find no evidence that physicians endogenously respond to
differential payment by relocating to the side of the border with higher reimbursement. Addi-
tionally, I find that observable physician characteristics do not predict whether they receive higher
reimbursement, further underscoring that selection is not a driving force of the results.

Finally, I perform a back-of-the-envelope calculation to assess the degree to which these changes
in practice structure could result in increases in private-market prices through changes in bargain-
ing power. When combining my estimates with those from Dunn and Shapiro (2014), I find that
a 1% decrease in Medicare prices may result in a 0.15% to 0.50% increase in private prices. Given
the relative size of the private market to Medicare, it is possible that a substantial fraction—if not
all—of savings from decreased Medicare reimbursement are simply offset by higher costs to par-
ticipants in the privately financed market.

My findings contribute to the literature that analyzes how Medicare pricing affects market-
wide behavior. Acemoglu and Finkelstein (2008) show that a reform in the Medicare Prospective
Payment System, which increased the relative cost of labor by moving from full to partial cost reim-
bursement, increased adoption in new medical technologies in the hospital setting.3 Additionally,
Clemens and Gottlieb (2017) employ a geographic consolidation of payment areas and sharp ad-
justment to the relative price of surgical versus medical care to investigate how Medicare’s prices
influence those set by the bargaining processes between providers and private insurers. They find
that changes in private prices closely follow those made by Medicare. Finally, the research that is
most closely related to this paper is Dranove and Ody (2019), who find that increasing the relative
reimbursement for hospital-employed physicians leads to an increase in the share of doctors that
vertically integrated with hospital systems (and therefore could participate in these higher reim-
bursement rates). I build upon their work by finding that, in addition to the directly incentivized

3Clemens and Gottlieb (2014) also study technological adoption using a consolidation of geographic adjustments
in the Medicare Physician Fee Schedule. They find that increased reimbursement is associated with higher rates of
MRI utilization, particularly by non-radiologists. Another paper related to Medicare-induced technology adoption and
market structure change—although not directly due to price changes—is Finkelstein (2007), who studies the aggregate
effects of the rollout of Medicare.
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effects that they estimate, broad pricing pressure can affect market consolidation and integration
as well.

This paper also contributes to the body of research studying the impact of prices on physician
location. Much of the physician location literature, summarized by Nicholson and Propper (2012),
focuses on broad physician location choice in response to financial incentives and the urban-rural
divide in provider access and concludes that financial incentives have at most modest effects on
location choice. This paper extends this literature by examining whether financial incentives af-
fect location choice within urban areas, as indicated by bunching analyses and other metrics of
spatial concentration. Consistent with the literature on broad location choice, I find that financial
incentives have no detectable effects.

The remainder of this paper proceeds as follows: Section 2 discusses the background informa-
tion on Medicare geographic adjustment factors, which provide the identifying variation for my
analysis, and the data sources used. Section 3 presents a stylized theoretical model and resulting
comparative statics to motivate the expected effect of Medicare payments on practice structure.
Section 4 details the identification strategy, econometric specification, and tests of validity for my
research design. Section 5 discusses main estimates, robustness checks, and heterogeneity analy-
ses. Section 6 discusses the implications of my findings and concludes.

2 Background and Data

2.1 Medicare Payments and Identifying Variation

CMS reimburses physician services under Medicare Part B through use of the Physician Fee Sched-
ule. In a given year, providers in payment locality a are reimbursed for service j based on three
different components:

Paymentaj = ConversionFactor × RVU′j ×GAFa, (1)

where ConversionFactor is an annually updated baseline for payment and RVU represents a vec-
tor of three Relative Value Unit (“RVU”) components, which are intended to capture the resources
required for the labor, practice expense and malpractice premiums, respectively, for a given service
(and are therefore a measure of quantity). The GAF term represents geographic adjustment fac-
tors that account for the fact that labor, practice expense, and malpractice premiums vary in price
across various regions.

Medicare-designated metropolitan areas, which have not changed since 1997, receive a GAF
that is set based on locality-specific costs, while the remaining areas of the state, including non-
designated cities, are assigned a GAF based on costs outside of the designated localities.4 Figure
1 illustrates the geographic differences in payment areas. The top panel of the figure shows how

4The GAF is calculated using physician wages (labor); employee wages, costs for contracted services, rent and sup-
plies (practice expense); as well as liability insurance premiums (malpractice).
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(a) Payment Localities Across the United States
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(b) Payment Localities in the Dallas-Fort Worth Area

Notes: The purpose of this figure is to illustrate geographic variation in Medicare payment. Panel A displays differential payments for
designated metropolitan areas. There are 17 states that have within-state variation from geographic adjustment by Medicare, which
is provided by 37 designated metropolitan areas (indicated by the darkest colors). Light colors indicate states that lack intra-state
variation in geographic reimbursement. Panel B illustrates differential geographic adjustments for a large metropolitan area. Primary
care providers in the Dallas area and Fort Worth area have payment rates that are 4.3% and 3.1% higher, respectively, than providers
of the same health care services in the surrounding suburban areas. Percent differences of geographic adjustment factors are obtained
by multiplying each GAF component by the national average of work, practice expense and malpractice RVUs to provide the appro-
priate weighting of each component. Identifying variation is provided based on the sharp differences in these payments close to the
boundaries. Note that the white lines in Panel B represent major roads and highways to provide points of reference.

Source: CMS Physician Fee Schedule.

Figure 1: Identifying Variation: Medicare Payment Locality Boundaries
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(B) Over-Time Variation (2012-2015)

Figure 2: Identifying Variation: Boundary Differences in Medicare Payment

Notes: The purpose of this figure is to illustrate the dispersion of boundary differences in geographic adjustment factors and the rel-
atively stability of those differences over time. Panel A shows the distribution of cross-sectional variation in geographic adjustment
across locality borders, where a unit difference is interpreted as a 1% premium in a higher-paying adjacent locality. Panel B demon-
strates that these differences are relatively constant over time. Percentage differences of geographic adjustment factors are obtained by
multiplying each GAF component by the national average of work, practice expense and malpractice RVUs to provide the appropriate
weighting of each component. Density calculations are weighted according to the number of primary care physicians within 4 miles
of the boundary.

Source: CMS Physician Fee Schedule and CMS Physician and Other Supplier Public Use File.

different payment localities are dispersed throughout the United States. There are 17 states with
multiple geographic adjustment factors and 37 designated metropolitan areas within those states
(see Appendix Table A1 for a list of these localities). The bottom panel provides a more detailed
view of two localities in the Dallas-Fort Worth Metroplex to illustrate how the resulting payment
differences vary over the geography of urban areas. Providers in the Dallas and Fort Worth ar-
eas receive more generous reimbursements than providers of the same services in surrounding
suburban areas (ex. Plano or Flower Mound). These sharp, localized, within-state differences in
payments provide the variation used for my analysis. To be clear, I do not utilize across-state
differences in geographic adjustment factors in my analysis, since it is likely that many factors
(e.g., Medicaid/private insurance environment, licensing requirements, etc.) change across these
boundaries.

The magnitude of the differences across geographic boundaries is illustrated by Figure 2, where
the unit of analysis is a locality boundary.5 As evidenced by Panel A, cross-sectional discontinuities
between payment areas can be quite large—in some cases over 10%. Furthermore, for providers
that face the same costs, as is the case for those close to the boundary for these payments, this
additional Medicare revenue translates directly to profit, increasing its potential to impact provider
decisions. Meanwhile, these discontinuities are quite stable over time, as detailed in the Panel B.

5For instance, the boundary between Dallas and Rest of Texas payment localities is one such locality boundary, as is
the border between Dallas and Fort Worth, both of which are displayed in Figure 1(b).
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I view this stability as an advantage—Clemens and Gottlieb (2014) demonstrate that physician
responses to changes in Medicare prices evolve over several years. Due to the lack of variation in
prices over time, I believe the effects that I identify are indicative of long-run behavior.6

2.2 Data

The data used for the empirical analysis is primarily gathered from the Centers for Medicare and
Medicaid Services. The Medicare Physician and Other Supplier Public Use File supplies provider-
level data on addresses, summary information on patients treated, Medicare utilization, and char-
acteristics such as certification (e.g., Medical Doctor, Doctor of Osteopathic Medicine) and primary
specialty type. The CMS Physician Compare data set is used to gather additional provider-level
information on group size and affiliations, medical school attended, and year graduated.7 Within
the Physician Compare data, providers are considered to be part of a group practice if they have
filed a Medicare claim associated with that group’s taxpayer identification number within the last
twelve months. Because non-physician providers also bill Medicare, the group size measures in
this data will differ slightly from those who only measure the number of physicians associated
with a given group.

The geographic adjustment factors and relative value units are obtained from the Physician Fee
Schedule for reimbursements under Medicare Part B. The American Community Survey (“ACS”)
five-year (2011-2015) estimates (Ruggles et al., 2019) were used to obtain demographic information
on the Census-block-group level, which includes variables on age, educational attainment, insur-
ance coverage, household income, home values, and population. Finally, geographic shape files
were obtained from the U.S. Census Bureau. All data used is from 2015 unless otherwise noted.8

Further information on the data used and sample construction is detailed in Appendix Section B.
To construct the sample of physicians used for analysis, I first geocode all providers in states

that have multiple payment localities.9 Next, using the longitude and latitude for each physician
address, I calculated I calculated the straight-line distance between providers and nearby local-
ity borders, keeping all doctors within 10 miles.10 I exclude from my analysis boundaries where
physicians on one side of the boundary do not provide a good counterfactual for those on the
other side. This includes boundaries that straddle state lines (because providers on each side face
a different regulatory environment, as well as different private and state-level public insurance),
as well as those that are defined by rivers (because providers may face different demographic en-
vironments). Additionally, I remove borders where there are less than five providers within the

6Additionally, boundary discontinuity designs readily lend themselves to the identification of long-term effects, as
demonstrated by Ambrus et al. (2020) and Dell (2010), both of which identify long-run impacts from geographic dis-
continuities.

7The medical school rankings in this paper were obtained from Schnell and Currie (2018).
8While earlier years are available (specifically 2012-2014), I focus only on the cross-section due to the lack of over-

time variation in my treatment, as shown in Figure 2(b), and to avoid confounding my results with after-effects of major
legislation, namely the Patient Protection and Affordable Care Act, passed in 2010.

9This process was done using Texas A&M GeoServices.
10Locality borders are defined by adjacent zip codes that are assigned different geographic adjustment factors.
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bandwidth on either side of the border and remove providers that practice in a different locality
than either side of the boundary they would otherwise be assigned to.11

My final sample is further limited to only include physicians who specialize in primary care;
accordingly, all subsequent references to doctors or physicians throughout the remainder of the
paper focus on primary care physicians. I focus on primary care physicians for two reasons. First,
non-primary care doctors are much more likely than to have multiple practice locations (Xierali,
2018), making treatment assignment based on a single location problematic and likely to introduce
measurement error. Second, relative to medical or surgical specialists, doctors in primary care
are relatively homogeneous—only two specialties, Family Practice and Internal Medicine, make
up roughly 95% of PCPs.12 This homogeneity readily facilitates analysis within the regression
discontinuity framework discussed in Section 4.

Finally, in my preferred sample, I maintain only boundaries that have payment differences of
2 percent or more (I refer to this as my “High-Impact” sample). Unless specifically noted, this
sample will be used for all analyses. However, as shown in Section 5.3, my results are robust to
including all observations.

3 Theoretical Model

3.1 Setup

While theoretical models of physician behavior have considered how differential prices might
induce doctors to change treatment intensity or patient composition between Medicare and pri-
vately insured patients—McGuire and Pauly (1991) and Glied and Zivin (2002) are two well-cited
examples—there is a lack of theory illustrating how different Medicare payments might induce
variation in medical practice size. Accordingly, I present a stylized model of structure choice that
contrasts physician profit-seeking behavior with non-financial considerations. However, before
doing so, it is useful to understand the considerations that underlie the choices that physicians
make when selecting different group sizes.13 The significant dispersion in medical group size sug-
gests that there are a number of advantages and disadvantages to joining a larger medical group.
These advantages and disadvantages are summarized by Casalino et al. (2003), who analyze physi-
cian assessments of the advantages of larger group practice—which include bargaining leverage
with health plans, economies of scale, and lifestyle factors—as well as the disadvantages—lack of
coordination, lack of physician leadership and other problems stemming from group incentives.
These issues, along with loss of autonomy over patient care, are echoed in popular literature on

11Consider Figure 1(b) for an example of this. A doctor practicing in northwest Coppell could be within a bandwidth-
distance of the Fort Worth-Rest of Texas locality border and thus eligible for assignment to that border, even though she
practices in the Dallas locality. Accordingly, restrictions are made to ensure that this does not occur.

12In contrast, the top two specialist disciplines (Emergency Medicine and Diagnostic Radiology) comprise less than
17% of all specialty providers.

13I focus specifically on physicians as decision makers, as they provide the majority of health care services and sub-
stantially influence decisions in the clinical setting. This is true even if professional managers make decisions as agents
of the clinicians.
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the subject (e.g., Lipton 2012).
With these factors in mind, consider a highly simplified model where physicians choose prac-

tice structure, s, at the beginning of each period to maximize total utility, u.14 Total utility is ad-
ditively separable into utility from the physician’s share of profits, v(π(s)), and utility from non-
financial characteristics, w(s). In such a case, the physician solves:

max
s
u(s) = v(π(s))− w(s), (2)

where both v(·) and w(·) are increasing and concave in s.15 The assumptions on v(·) are standard,
while those on w(·) are motivated by the aforementioned literature—e.g. disutility from coordina-
tion and lack of autonomy is increasing in the size of the group practice but exhibits diminishing
disutility in larger practices.

Within this model, the physician’s profit as a function of group size s is:

π(s) = po(s) · qo + pm · qm −mc(s) · (qm + qo), (3)

where px and qx denote the price and quantity of patients covered by insurer type x = {Medicare
(m), Other private (o)}, and mc(s) · (qm + qo) represents a cost function that is linear in quantity
and the same for publicly and privately insured patients. The marginal cost function, mc(s), is
assumed to be decreasing and convex to capture efficiency costs associated with larger groups.
Finally, adapting the conceptual framework from Clemens and Gottlieb (2017), I parameterize pri-
vate prices, po, as:

po(s) = (1− θ(s)) · pins + θ(s) · pm, (4)

where θ(s) ∈ [0, 1] is the relative bargaining strength of the insurer. The term pins is the highest
price the insurer is willing to pay the physician and pm is the Medicare price, which acts as the
physician’s reservation price.16 Lower values of θ(s) represent physician groups with substantial
bargaining power and are able negotiate prices closer to the insurer’s reservation price. Conversely,
high values of θ(s) represent doctors with lower bargaining power and are therefore paid rates
closer to the reservation price. To reflect larger groups’ ability to elicit higher prices (Dunn and
Shapiro, 2014), θ(s) is assumed to be decreasing and is additionally assumed convex to reflect
diminishing bargaining power as s becomes large.

14This framework makes two substantial simplifications for the purposes of clarity and tractability. First, the model
treats the physician’s location as exogenous. As discussed in Section 4.2, this assumption appears to be empirically
supported, as there is little-to-no evidence of spatial response to differential payments. Second, quantity could also
increase in tandem with higher prices due to physician-induced demand, as demonstrated by Clemens and Gottlieb
(2014) or patient composition of Medicare vs. privately insured patients could change. Appendix Section A investigates
how incorporating quantity responses affects model outcomes. I find that, under similar assumptions, predictions are
largely the same as discussed below. Additionally, the results discussed further in Appendix Section C suggest minimal
extensive-margin response to differential prices, supporting the assumption that patient composition is unchanging.

15Note that, even though the function−w(s) is convex, it also satisfies the conditions for quasi-concavity based on the
strict monotonicity of its first derivative. Accordingly, u is strictly quasi-concave and therefore can achieve a maximum.

16Note that, in any equilibrium where bargaining has resulted in an agreement between rational parties, it must be
that pins ≥ pm.
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3.2 Comparative Statics

To assess the impact of differential Medicare prices on selected group size, consider the first order
conditions of the model specified by Equations 2 through 4:

∂u(s)

∂s
= 0⇔ vππs − ws = 0 = φ(s), (5)

where subscripts denote derivatives with respect to the subscripted argument. Then, totally dif-
ferentiating to obtain the comparative static of Medicare prices, pm, on group size, s, yields:

ds

dpm
= −

∂φ(s)/∂pm

∂φ(s)/∂s
= −vπππsπp

m + vππspm

uss
. (6)

Utilizing the properties of the model specified in Section 3.1, the sign of Equation 6 is:

ds

dpm
< 0. (7)

Thus, the model predicts that group size responds negatively to higher in Medicare prices, as the in-
come effect of higher prices affords physicians the luxury of choosing group sizes that more closely
align with their non-financial preferences. This conclusion holds even when price or marginal costs
are assumed to be unresponsive to group size (i.e. θs = 0 or mcs = 0). I next consider whether
this conclusion is empirically true in the following sections.

4 Empirical Framework

4.1 Identification and Econometric Model

To identify the effects of Medicare payments on practice structure, I estimate the following model
for all providers within the neighborhood of a locality border:

Yip = δ ·Highp + φb(p) + f(Zp) + h(Xip) + εip, (8)

where idenotes a primary care physician practicing in location p. The main outcome of interest, Yip,
is a variable indicating whether a PCP is affiliated with a small practice group, defined as a medical
group practice with 25 or fewer providers. The threshold of 25 providers was chosen because that
is the group size generally used by CMS to distinguish small and large practice groups.17

17See, for instance, Centers for Medicare and Medicaid Services (2015). This measure was chosen as my primary
measure, rather than a measure of average group size selected, because moderate shifts in the distribution of group
sizes can have very large effects on the average group size that are difficult to interpret and may seem implausible at
first glance. To be concrete: in the context I study, if 5% of primary care physicians in a market moved from the 75th
percentile of group size (roughly 250 providers) to the 25th percentile of group size (roughly 2 providers), this would
result in a reduction of∼0.50 log points (or a∼40% decrease) in the average log group size chosen by physicians in that
market. Nonetheless, I also consider the effects of this payment discontinuity on average (log) group size and find that
the effects are consistent with the other results presented in this paper. See Appendix Section C for more detail.

10



The variable High is a binary variable equal to one if a provider is on the side of the border
with higher payment rates. The coefficient on High, δ, is the parameter of interest. To account
for locality-specific characteristics of providers, I also include border fixed effects, φb(p). In certain
specifications, φb(p) represents cluster-by-border fixed effects, wherein nearby physicians assigned
to the same border are grouped together into clusters (using k-means clustering) in order to better
control for spatial characteristics of the localities that I study. Next, f(Zip) represents a polynomial
in distance from the border that varies on each side of the cutoff. In my preferred specification,
I utilize a first-order polynomial. Finally, h(Xip) is comprised of a flexible set of local, patient-
population, and provider controls.18

The identifying variation from my analysis comes from sharp changes in geographic adjust-
ment factors over space. I assign GAFs to providers based on their practice location and specialty.
Specifically,

GAFip =
∑

κ∈work,pe,mp
gafκ(p) · rvu shareκ(i), (9)

gafκ(p) is the geographic adjustment factor component (work, professional expense, or malpractice
premiums) that varies based on physician zip code and rvu shareκ(i) is the share of relative value
units in each component for physician i’s specialty, calculated at the national level.19 The GAF is
constructed using national RVU shares—-rather than individual shares—-to avoid any endogenous
change in service mix in response to differential payment.

The interpretation of the coefficient of interest, δ, in Equation 8 is the change in the outcome
in response to higher payment. To facilitate interpretation as the effect of a 1 percent change in
reimbursement, I also estimate a regression discontinuity-instrumental variables (“RD-IV”) design
as follows:

Yip = δ · ĜAF ip + φb(p) + f(Zp) + h(Xip) + εip, (10)

GAFip = θ ·Highp + φb(p) + f(Zp) + h(Xip) + εip. (11)

The coefficient θ in the first stage (Equation 11) describes the average differential in reimburse-
ment between the high- and low-payment sides of the borders in my sample. In my main anal-
ysis, the coefficient of interest, δ, is equal to the percentage point change in the number of PCPs
practicing in small groups in response to a 1 percent increase in Medicare generosity. For nota-

18Local controls include percentage of population by (a) age bins, (b) educational attainment bins, and (c) insurance
coverage categories; median household income, median real-estate value, and density controls. Block group character-
istics are assigned to individual physicians by calculating an inverse-distance-weighted average of characteristics within
2 miles of a physician’s location, where distance is calculated from the physician location to block-group population
centroid. Patient population controls include the average age and hierarchical condition category score for a physician’s
patient population. Finally, physician characteristics include quantiles of medical school rank and experience, as well
as controls for gender.

19To provide a concrete example: if 53%, 43%, and 3% of the Family Practice specialty’s total RVUs come from work,
professional expense, and malpractice RVUs, respectively, then these percentages will be used as weights for the locality-
specific work, professional expense, and malpractice GAFs to arrive at the final geographic adjustment factor for that
specialty.
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tional convenience (and to differentiate from estimates from other equations), I refer to this coef-
ficient as ”δRD−IV ” throughout the paper. This estimate could alternatively be recovered by sep-
arately estimating the first-stage regression (Equation 11) and the reduced-form equation (Equa-
tion 8) and subsequently dividing the reduced-form estimate (δRF ) by the first-stage estimate
(δRD−IV = δRF /θ).

The estimation of my reduced-form analysis (Equation 8) is performed using ordinary least
squares, while RD-IV analyses are estimated using two-stage least squares. All analyses utilize a
rectangular kernel in distance from the border and standard errors clustered at the census tract-
level to account for spatial correlation. Alternatives to both kernel and clustering choices are con-
sidered in Appendix Section C, with highly similar results.

The selected bandwidth is based on the travel distance to obtain medical services. Specifically, I
set bandwidth equal to the median travel distance in the core-based statistical areas that contain my
borders of interest, as determined by the National Household Transportation Survey (“NHTS”).
The resulting bandwidth is equal to 4 miles. Robustness to alternate bandwidth choices are con-
sidered in Section 5.2.

4.2 Validity of Regression Discontinuity Design

The primary identifying assumption underlying my regression discontinuity design is that the un-
observable determinants of practice structure evolve smoothly across the boundary (i.e. that they
are continuous with respect to the running variable). However, in the context studied in this paper,
there are clear financial incentives for physicians to migrate to higher payment areas. Accordingly,
a threat to my research design is manipulation of the running variable, which would be evidenced
by significant high-payment side bunching immediately after the boundary, as providers relocate
their practices to more profitable locations.

I consider such behavior in Figure 3. Panel A displays the results of a McCrary (2008) bunching
test, which shows no evidence of manipulation around the boundary. However, the figure does
present a distinct bi-modal pattern, with peaks on either side of the boundary (with a higher-
density mass on the high-payment side), which is largely due to changes in population density.
Accordingly, Panel B presents a similar analysis to Panel A using the total number of primary
care physicians per thousand individuals. Within the figure, each dot represents physician-to-
population ratios in one-tenth-of-a-mile increments, along with local linear regression lines and
associated 90 percent confidence intervals fit to either side of the cutoff. This figure displays no
detectable discontinuity at the cutoff. Notably, there is a statistically insignificant decrease—rather
than the hypothesized increase—in the physician-to-population ratio on the high-payment side of
the boundary.

A further concern regarding manipulation of the running variable is that, due to spatial fric-
tions, physicians might relocate several miles away from the cutoff, rather than immediately to the
high-payment side. In this case, it would be possible that there would be no evidence of bunching at
the cutoff, but there would still be mass displaced from the low-payment side to the high-payment
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(C) Physician Movers (All)

0.0

0.2

0.4

0.6

0.8

1.0

Ph
ys

ic
ia

n 
M

ov
er

s 
pe

r T
ho

us
an

d

-10 -8 -6 -4 -2 0 2 4 6 8 10
Distance from Boundary (in Miles)

(D) Physician Movers (Within-HRR)

Figure 3: Validation of Research Design: Spatial Provider Density

Notes: The purpose of this figure is to illustrate the absence of bunching around locality boundaries. Panel A performs a McCrary
(2008) analysis to assess the degree of bunching, if any, around the cutoff. Note that negative values indicate distances in the relatively
lower payment areas, and positive values indicate distances in the higher payment areas. Panel B shows the spatial distribution of
primary care physicians per 1,000 individuals by their distance to the nearest treatment boundary. Panels C and D examine physicians
who moved to their current location during the years 2012-15, with Panel C examining all such movers and Panel D displaying results
for movers who stayed within the same Hospital Referral Region (“HRR”). All local linear regression lines are presented with their 90
percent confidence intervals. For presentation purposes, observations are winsorized at the 99th percentile. See also Appendix Figure
A1 for other manipulation tests. This analysis utilizes the High-Impact Sample discussed in Section 2.2.

Source: Author calculations using CMS Physician Fee Schedule and CMS Physician and Other Supplier Public Use File.

side. If this were the case, then Figure 3B would demonstrate a consistently higher mass of primary
care physicians per thousand individuals on the high-payment sides of the boundary, which I do
not see. To further extend the analysis, Panels C and D of Figure 3 examine the location choices
of PCPs who moved within the last three years, on the basis that physician-movers may be subject
to fewer optimization frictions as non-moving physicians. Panel D further limits these movers to
those that have moved within hospital referral regions (“HRRs”) and thus may be more informed
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about local differences in reimbursement than other movers. Neither of these “mover” analyses
provide any evidence to suggest that primary care physicians are sorting around these payment
boundaries, even when optimization and informational frictions are reduced. Finally, Appendix
Figure A1 considers additional tests of bunching by re-performing two different variants of the
analysis in Figure 3B: (i) using the log (rather than level) of the physician-to-population ratio and
(ii) using the number of practice locations (rather than primary care physicians). The results of
these analyses closely mirror those in Figure 3B, further supporting a lack of sorting around the
boundary.

It is worth considering why substantial bunching is not observed at the cutoff, given the impact
of differential payments on other aspects of provider practice. There are several possible reasons
for this. First, geographic location plays a significant role in patient demand for health care ser-
vices (e.g., Dunn and Shapiro, 2014; Gowrisankaran et al., 2015; Kessler and McClellan, 2000).
Accordingly, relocation of a practice could result in significant patient turnover and thus could
be very costly. A second and closely related factor is the impact of spatial proximity on competi-
tion between medical practices. To the degree that patients choose providers based on distance,
providers will be incentivized to avoid increases in competition—and the resulting patient acqui-
sition costs and/or loss of volume—that would result from bunching. Finally, while the impact of
these payments on physicians’ profit is substantial, the actual borders that determine these price
differences may not be salient for physicians. This is particularly true for physicians (and groups)
who practice in a single locality, as they may not have a readily available counterfactual of the dif-
ferential payment they would receive if practicing elsewhere. Additionally, while physician groups
with multi-locality practices may be more aware of geographic payment differences, they are dis-
incentivized to spatially adjust, because doing so might lead to competition among physicians in
the same practice.

While I do not detect any manipulation of the running variable, it is theoretically possible that
physician sorting across the boundary is occurring in a way that is not detected by my bunching
analysis. While I cannot test for sorting along unobservable dimensions, I can evaluate whether
discontinuous changes in observable physician characteristics exist. To evaluate discontinuities in
observable characteristics, I apply the least absolute shrinkage and selection operator (“LASSO”)
method to predict (i) receipt of treatment and (ii) choice of small group practice. Employing a
LASSO design in this context allows me to utilize a wide range of physician characteristics and
their interactions to best predict my outcomes of interest and examine their evolution over the
cutoff.20 Insofar as sorting on either side of the boundary occurs, I expect the LASSO-predicted
outcomes to also display discontinuous changes at the cutoff.

Figure 4 displays the results of this analysis, where Panel A shows the results when the LASSO-
predicted GAF is the outcome variable in Equation 8 and Panel B demonstrates the estimated effect
when the outcome is the LASSO-predicted fraction of primary care physicians in a small practice

20Physician characteristics include indicator variables for specialty type, gender, credential, medical school ranking
quantile, experience quantile, and quantiles for a wide array for patient characteristics. Interacting these indicators to
allow a highly flexible specification equation yields 1,931 covariates for the LASSO procedure to select from.
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(B) LASSO-Predicted Main Result     

Figure 4: Validation of Research Design: Smoothness of LASSO-Predicted Outcomes

Notes: The purpose of this figure is to illustrate the smoothness of covariate-predicted outcomes through the cutoff. As further discussed
in the text, each panel represents a LASSO-generated prediction using physician characteristics (and their interactions) to establish that
observable characteristics are not predictive of either the treatment (Panel A) or main outcome (Panel B). Within the panels, each point
represents the means of the outcome variable (displayed on the y-axis) in 0.5-mile increments, with the size of the point varying by
the number of observations included. All means presented have been regression-adjusted to net out locality-border fixed effects. Each
side of the cutoff—where negative distances represent low-payment sides and positive distances are associated with high-payment
sides—are fit with linear regression lines and associated 90% confidence intervals. Estimated coefficients from Equation 8 along with
associated standard errors are presented in the upper-left corner. This analysis utilizes the High-Impact Sample discussed in Section
2.2.

Source: Author calculations using CMS Physician Fee Schedule, CMS Physician Compare Data, CMS Physician and Other Supplier
Public Use File.

group. Within the panels, each point represents the means of the outcome in 0.5-mile increments,
with the size of the point varying by the number of observations included. All means presented
have been regression-adjusted to net out locality-border fixed effects. Each side of the cutoff—
where negative distances represent low-payment sides and positive distances are associated with
high-payment sides—are fit with linear regression lines and associated 90% confidence intervals.
Estimated coefficients from Equation 8 along with associated standard errors are presented in the
upper-left corner. (All regression discontinuity plots displayed in the remainder of this paper are
formatted in this way.)

As displayed in the figure, there is no evidence of sorting across the cutoff. Not only do the
point estimates fail to achieve any traditional level of statistical significance, but they are also eco-
nomically small: a 0.1 percent difference in the predicted geographic adjustment factor and a 0.6
percentage point difference in predicted small group participation, both of which are 1-2 orders
of magnitude smaller than the results discussed in the next section. Taken in total, the analyses
suggest no physician sorting that would bias my results. As an additional test of robustness, I fur-
ther examine the sensitivity of my estimates to inclusion of provider and block-group controls in
Section 5 and find that my results are not sensitive to inclusion of covariates.21

21As further discussed in Appendix Section C and displayed in Appendix Figure A2, I also examine how individual
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Figure 5: Main Results: Discontinuities at the Boundary

Notes: The purpose of this figure is to display the main results of my analysis: the first-stage impact of the border discontinuity (Panel
A) and the second-stage impact on the percentage of primary care physicians practicing in small groups (i.e. those with 25 or fewer
providers, displayed in Panel B). The coefficients and associated standard errors displayed in each panel are estimated using Equation
8. All means presented have been regression-adjusted to net out locality-border fixed effects. Each side of the cutoff—where negative
distances represent low-payment sides and positive distances are associated with high-payment sides—are fit with linear regression
lines and associated 90% confidence intervals. Estimated coefficients from Equation 8 along with associated standard errors are pre-
sented in the upper-left corner. Finally, for context, note that the pre-cutoff raw means corresponding to Panels A and B are 1.00 and
0.44, respectively. This analysis utilizes the High-Impact Sample discussed in Section 2.2.

Source: Author calculations using CMS Physician Fee Schedule, CMS Physician Compare Data, and CMS Physician and Other Supplier
Public Use File.

5 Results

5.1 Main results

The central results of my analysis are graphically displayed in Figure 5. Panel A demonstrates
the impact of the border discontinuity on physician reimbursements: among borders included in
my High-Impact Sample, the discontinuity results in a 5.1 percent increase in reimbursement on
average. Panel B displays the effect of this discontinuous increase in payments on physician practice
structure. Consistent with the comparative statistics of the model described in Section 3, I find
that primary care physicians organize into smaller groups in response to more generous payment.
Specifically, I estimate that there is an 11.3 percentage point increase in primary care physicians
that practice in small groups—defined as groups with 25 or fewer providers—on higher-payment
sides of the boundary. The estimates in this figure are mirrored in the first column of Table 1, Panels
A and B, respectively. An unusual feature of the regression discontinuity plot in Figure 5, Panel
B worth noting is that the point immediately to the right of the cutoff has a substantially higher
fraction of PCPs in small group practices than would be expected based on the regression line. To

characteristics vary across the cutoff, both on the physician- and block-group-level. These results also do not suggest
any physician sorting across the boundary.
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Table 1: Main Results

Outcome (1) (2) (3) (4)

Panel A: First Stage

Geographic Adjustment Factors 0.051 *** 0.051 *** 0.051 *** 0.049 ***
(0.003) (0.003) (0.002) (0.002)

Panel B: Reduced Form

% of Physicians in Small Groups 0.113 ** 0.093 * 0.098 * 0.101 **
(0.053) (0.051) (0.052) (0.051)

Panel C: Instrumental Variables

% of Physicians in Small Groups 2.208 ** 1.819 * 1.963 * 2.055 **
(1.052) (1.009) (1.026) (1.046)

Controls:
Distance controls X X X X
Border FE X X X
Provider characteristics X X
Local controls X
Cluster FE X

Dep. var. mean 0.456 0.456 0.456 0.456
Observations 5,065 5,065 5,065 5,065
First stage F-statistic 399 396 505 541
Bandwidth (in miles) 4 4 4 4

Notes: This table reports the results of the analysis for different specifications. Panel A describes the estimation of the first stage (i.e.
when GAFip is an outcome) using Equation 8. Panel B estimates the effect of the discontinuity on physician practice structure using
Equation 8, where the coefficients are interpreted as the reduced-form effect of crossing the payment boundary. Panel C displays
coefficients when estimating the RD-IV strategy (Equations 10 and 11), wherein coefficients are interpreted as the effect (in p.p.)
of a 1 percent increase in reimbursement. Columns 1 through 4 present the baseline specification and specifications with differing
controls. All specifications utilize a rectangular kernel in distance from the boundary and are clustered at the Census-tract level. This
analysis utilizes the High-Impact Sample discussed in Section 2.2. Significance at 10%, 5%, and 1% levels is represented by *, **, and
***, respectively.

Source: Author calculations using CMS Physician Fee Schedule, CMS Physician Compare Data, CMS Physician and Other Supplier
Public Use File, Census Block Group 5-year ACS Estimates (Ruggles et al., 2019).

alleviate concerns that this outlier point is driving the results of my analysis, I perform a “donut-
hole” test in Section 5.2, wherein I re-perform my analyses after omitting observations within a
specified distance of the cutoff. I find that omission of this unusual point does not meaningfully
change my results.

To facilitate the interpretation of the effects that I find in my reduced-form analysis, I estimate
the RD-IV specification (Equations 10 and 11) in Panel C of Table 1. These estimates imply that a
1 percent increase in the reimbursement rate is associated with a 2.2 p.p. increase in the fraction
of primary care doctors affiliated with small practice groups. As illustrated in Columns 2 and 3
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Figure 6: Distributional Effects on Group Size

Notes: The purpose of this figure is to display the distributional effects of differential Medicare reimbursement on group size. Panel A
separately displays raw cumulative distribution functions of physicians by practice group size for high- and low-reimbursement sides
of the border and within the bandwidth. Panel B displays point estimates—and associated 90% confidence intervals—for the RD-IV
specification in separate regressions, where the outcome Yip = 1(GroupSize ≤ g) is generated for each value of group size g on the
x-axis. This analysis utilizes the High-Impact Sample discussed in Section 2.2.

Source: Author calculations using CMS Physician Fee Schedule, CMS Physician Compare Data, and CMS Physician and Other Supplier
Public Use File.

of Table 1, these results are stable when control variables are added. Furthermore, when I replace
my border fixed effects with more spatially fine-grained cluster-by-border fixed effects (Column
4), I obtain similar results.22 As noted in Section 4, all specifications utilize a rectangular kernel
in distance from the boundary and are clustered at the Census-tract level. Because the results are
highly similar across all specifications, I consider Column 1 to be my preferred specification, as it
is the most parsimonious.

In addition to my “small group” outcome, I also examine the effects of differential reimburse-
ment across the entire distribution of selected group sizes. Panel A of Figure 6 displays the raw
cumulative distributions of selected practice sizes separately for the high- and low-reimbursement
sides of the border. (Note that the x-axis utilizes a logarithmic scale of base 2, which is employed
because the group sizes exhibit substantial positive skewness.) Meaningfully, the distribution on
the high-payment side of the border stochastically dominates the low-payment distribution, in-
dicating that a much higher fraction of primary care physicians in higher-payment areas choose
smaller practices. A Kolmogorov-Smirnov test easily rejects that the two sides have equal distribu-
tions (p < 0.01).

To evaluate this within the context of my regression discontinuity framework, I estimate sep-
22See Appendix Figure A4 for illustration of these physician clusters and Appendix Section B for a discussion of how

they were constructed using k-means clustering. To further assess the role of spatial characteristics, Appendix Figure
A3 presents estimates and associated regression discontinuity plots of a specification without any spatial fixed effects
and finds results that are qualitatively similar, though slightly larger in magnitude.
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arate RD-IV regressions (Equations 10 and 11) for various points in the cumulative distribution.
This is done by utilizing an outcome of Yip = 1(GroupSize ≤ g), where g represents a point in the
cumulative distribution.23 The estimates from this analysis, along with their associated 90% con-
fidence intervals are presented in Figure 6, Panel B.24 This figure supports the conclusions drawn
from Panel A: in response to higher payment, providers are more likely to sort into the small group
practices and less likely to be employed by the largest groups.

The effects on practice size manifest very early in the distribution of group sizes. The RD-IV
estimate implies that, in response to reimbursement that is 1 percent more generous, there is a
1.8 p.p. increase (p = 0.050) in primary care physicians who are affiliated with practice groups
with 1 or 2 providers. The effects on the smallest group persist throughout the distribution until
they are offset by reductions in groups of 150 greater (δRD−IV = −1.9, p = 0.075).25 Groups of
this size are generally comprised of hospital systems or physician groups that are affiliated with
a particular hospital system. Accordingly, to frame my results another way, pricing pressure might
force providers who would have non-financial preferences to practice in a small group to select
larger organizations, with the net effect of increasing primary care physicians employed by large,
vertically integrated health systems and their associated physician employment groups. More gen-
erally, these results may suggest that diminished profitability is a driving force behind the recent
trend of consolidation of small physician practices into larger ones (e.g., Capps et al., 2017; Kane,
2019; Muhlestein and Smith, 2016).

Finally, I consider two other measures of practice structure, both of which are presented in Ap-
pendix Figure A8. The first measure, presented in Panel A, details effects of differential effects on
practice location size. Specifically, the outcome for this analysis is the log number of providers at
a given practice location, defined as an address-group combination. I do not detect any effects
on practice size, suggesting that providers are not responding by spatially consolidating into loca-
tions with more physicians. This is consistent with the lack of spatial response detailed at length
in Section 4.2. The second measure, presented in Panel B, details the impacts of differential reim-
bursement on average log group size. This measure is not presented as a primary outcome because
it is challenging to interpret and because moderate shifts in the distribution of group sizes can have
very large effects on average group size. The results in Panel B underscore this: the discontinuity
displayed implies a decrease of 0.54 log points (roughly a 41% decrease) in group size. While
this may appear implausible at first, approximately the same result would be achieved if 5% of
the primary care providers in a market moved from the 75th percentile of group size (roughly 250
providers) to the 25th percentile of group size (roughly 2 providers). Based on the differences
in cumulative distributions displayed in Figure 6, effects of roughly this magnitude appear to be
present, supporting the assertion that the effects on average size are reasonable.26

23This analysis is performed using similar methodology as Barcellos et al. (2019), who examine the distributional
effects of education on health within a regression discontinuity framework.

24For an analogous exercise focusing on the probability distribution, rather than cumulative distribution, see Ap-
pendix Section C and Appendix Figure A5.

25Regression discontinuity plots for these figures are displayed in Appendix Figure A6.
26I also consider two other more frequently examined outcomes from the physician payment literature: per-patient
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Figure 7: Robustness: Bandwidth Sensitivity

Notes: The purpose of this figure is to display robustness tests of the main result displayed in Table 1. Panel A displays point estimates for
the RD-IV specification for separate regressions utilizing varying bandwidths (ranging from 50% to 150% of the baseline bandwidth, or
2 to 6 miles). Panel B shows estimates from the RD-IV specification for separate “donut” regressions on samples that omit observations
within a given distance from the cutoff, ranging from 0 to 1 mile(s). In both panels, 90% confidence intervals are displayed using dashed
lines and the preferred estimate is shaded dark blue. These analyses utilize the High-Impact Sample discussed in Section 2.2.

Source: Author calculations using CMS Physician Fee Schedule, CMS Physician Compare Data, CMS Physician and Other Supplier
Public Use File.

5.2 Robustness

Aside from the assumptions that unobservable characteristics do not vary over the boundary and
that there is no meaningful sorting by providers, the choice of bandwidth is the most critical to my
analysis. To consider sensitivity of my results to this assumption, I re-estimate my RD-IV results
(Equations 10 and 11) for various multiples of bandwidth, as shown in Figure 7 Panel A. Overall,
the coefficients are highly consistent, although they lose precision at narrower bandwidths, which
is consistent with the bias-variance trade-off.27

Additionally, motivated by the outlier point immediately to the right of the cutoff in Figure 5,
I perform a “donut” hole analysis (Figure 7, Panel B), by estimating separate regressions on sam-
ples that omit observations within a given distance from the cutoff, ranging from 0 to 1 mile(s). As
displayed in the figure, the RD-IV estimates are highly consistent over the size of the omitted sam-
ple, although my estimates do predictably fail to attain traditional levels of statistical significance
when increasingly large number of observations are omitted. In addition to measuring sensitivity
to outliers, this test accomplishes two goals. First, insofar as there is sorting immediately around

resource utilization (i.e. the intensive-margin treatment decision) and the number of Medicare patients treated (i.e. the
extensive-margin treatment decision). See Appendix Section C and Appendix Figure A7 for further discussion.

27An alternate approach is to utilize methods developed by Calonico et al. (2014) to non-parametrically select band-
width and estimate results within a local linear regression specification. When applying these methods within a fuzzy
regression discontinuity framework (comparable to my RD-IV specification), I obtain highly similar results to my base-
line analysis (δ = 2.205, p = 0.016).
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the cutoff that is not otherwise detected by my tests in Section 4.2, physicians who have manip-
ulated the running variable (and therefore unobservably differ across the cutoff) will be omitted
from my sample. Second, these analyses will reduce measurement error in my treatment variable
from inaccurately geocoded physician locations, to the degree that such measurement error exists.
The consistency of the estimates over the range of “donut hole” sizes supports the idea that my
estimates are not meaningfully biased by endogenous sorting or measurement error.

I perform a variety of other robustness checks, which are detailed and discussed further in Ap-
pendix Section C. However, I will briefly summarize them here. First, I consider whether results
are being disproportionately influenced by individual locality borders by re-running my preferred
specification while omitting a given border from the analysis. The results of this analysis, which
are detailed in Appendix Figure A9, demonstrate that my results are highly consistent when omit-
ting any given border from my sample. Next, I consider sensitivity of my estimates to different
choices of clustering strategy, kernel, and controls (i.e., using quadratic and border-varying linear
distance controls as well as granular physician specialty controls). I also consider a wide variety
of sample restrictions to test sensitivity of my estimates to sample construction choices and spatial
idiosyncrasies. The results of these tests are summarized in Appendix Figure A10, where I find
that my point estimates are consistent regardless of specification choice.

5.3 Alternate IV and Full Sample Results

The results so far are based the on reduced-form and RD-IV analyses discussed in Section 4. While
these methods have the advantage of transparency (i.e. both the first and second stages can be
clearly displayed graphically), they do not utilize all the plausibly exogenous variation that is gen-
erated by these border discontinuities. Specifically, the RD-IV design utilizes the average disconti-
nuity across all borders, rather than exploiting discontinuities specific to each border. To address
this issue, I estimate an alternative design, where the second stage is unchanged from Equation
10, but the first-stage equation utilizes multiple discontinuities and allows the θ coefficient to vary
across borders:

Yip = δ · ĜAF ip + φb(p) + f(Zp, b(p)) + εip, (12)

GAFip =
∑
k∈B

θk ·Highp × 1[b(p) = k] + φb(p) + f(Zp, b(p)) + εip. (13)

The instruments in Equation 13 are created by interacting (i) a binary variable equal to 1 if
a provider is located on the high-payment side of the border and (ii) an indicator variable for
assignment to a given border. I also allow trends in the running variable to vary on each side of the
cutoff and by each border, so the first-stage equation is effectively estimating a separate regression
discontinuity for each of the borders in my sample. I refer to this estimation strategy as the “RD-
Border” specification.

I apply this strategy, along with my RD-IV specification, to both my High Impact Sample (i.e.,
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Table 2: Full-Sample and Alternate IV Results

Outcome (1) (2) (3) (4)

% of Physicians in Small Groups 2.208 ** 1.339 1.703 ** 1.673 **
(1.052) (1.709) (0.849) (0.850)

Sample High Impact Full High Impact Full
Instrumental variable RD-IV RD-IV RD-Border RD-Border
Observations 5,065 9,685 5,065 9,685
First stage F-statistic 399 148 7,468 5,920

Notes: This table reports results for different samples and instrumental variable strategies. Columns 1 and 2 display coefficients and
associated standard errors when estimating using the RD-IV (Equations 10 and 11), whereas Columns 3 and 4 display results for the
RD-Border IV (Equations 12 and 13). Columns 1 and 3 utilize the High-Impact Sample discussed in Section 2.2 while Columns 2
and 4 use all available borders. All specifications utilize a rectangular kernel in distance from the boundary and are clustered at the
Census-tract level. Significance at 10%, 5%, and 1% levels is represented by *, **, and ***, respectively.

Source: Author calculations using CMS Physician Fee Schedule, CMS Physician Compare Data, CMS Physician and Other Supplier
Public Use File.

those borders with substantial payment differences) and the full sample of borders. The results are
displayed in Table 2. The first column repeats the estimates from my preferred specification (Table
1) for comparison. When the RD-IV estimation is applied to the full sample—as shown in Column
2—the estimate decreases meaningfully and also suffers from a high degree of imprecision. This
is consistent with a first stage that is roughly half as large as when the High-Impact Sample is used
(Appendix Figure A11). Columns 3 and 4 repeat the analyses of Columns 1 and 2 when applying
the “RD-Border” estimation strategy to potentially increase the precision of my estimates. When
this method is applied to the High-Impact Sample (Column 3), estimates are similar to my RD-IV
analysis (although somewhat smaller, they are not statistically different). When I apply the RD-
Border estimation to the full sample, the results—displayed in Column 4—yield nearly identical
estimates to those from the High-Impact sample. Accordingly, these analyses demonstrate that the
results I find are not driven by my choice of sample selection.28

5.4 Heterogeneity

I conclude this section by conducting two heterogeneity analyses to better understand the effect
of Medicare pricing on physician practice choice. First, because the financial impact of Medicare
reimbursement policy will likely be larger for physicians practicing in areas with a higher share
of Medicare-eligible population (those aged 65 and over), I test whether PCPs practicing in high-
share areas respond more strongly to differential Medicare reimbursement. To do so, I divide my
High-Impact Sample into two groups: primary care physicians assigned to borders with above-
median shares of Medicare-eligible population and PCPs assigned to borders with below-median

28I also re-perform my distributional analyses from the previous section using the full sample and RD-Border esti-
mation. These results, which are displayed in Appendix Figure A12, are consistent with those from my High-Impact
Sample analysis.
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Figure 8: Heterogeneous Effects by Border Characteristics

Notes: The purpose of this figure is display heterogeneity of results by physicians’ local environment. Within each panel, reduced-form
estimates (Equation 8) and associated standard errors are in the upper-right corner, while the first-stage (Equation 11) and RD-IV
estimate (δIV , from Equation 10) and associated standard errors are in the bottom-right corner. The first set of estimates, displayed
in Panels A and B, splits the sample according to borders that have above- and below-median shares of over Medicare-eligible adults,
respectively. The second set of estimates, displayed in Panels C and D, splits the sample according to borders that have above- and
below-median levels of health insurer market concentration, as measured by the Herfindahl-Hirschman Index (“HHI”).

Source: Author calculations using CMS Physician Fee Schedule, CMS Physician Compare Data, CMS Physician and Other Supplier Pub-
lic Use File, Census Block Group 5-year ACS Estimates (Ruggles et al., 2019), American Medical Association Market Share Calculations.

shares.29 The results of this analysis are displayed in Figure 8, Panels A and B, which mirror re-
gression discontinuity plots presented in this paper, but with additional information about the
first stage (θFS) and RD-IV estimates (δIV ) presented in the bottom-right corner. As expected,
estimates are substantially larger for primary care doctors who practice in areas where there are
more Medicare-eligible individuals, and who are therefore more dependent on Medicare reim-
bursement. While it is possible that these effects are driven by other factors that are correlated with
both larger over-age-65 population shares and higher degrees of responsiveness to payment dif-
ferentials, this analysis provides further suggestive evidence that the differences in practice choice

29I choose to divide providers into groups based on border-level, rather than individual-level, characteristics because
it is possible that the number of Medicare patients treated is endogenous.
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are driven by Medicare’s reimbursement decisions.30

Next, I investigate how variation in private insurer bargaining power (as proxied by market
concentration) may affect physician responses to differential Medicare reimbursement. The ef-
fects of insurer bargaining power are ex-ante ambiguous. In the context of my model (Equation 4),
powerful insurers are more likely to push negotiated private prices, po(s), closer to the physician’s
reserve price, pm (in other words, θ(s) → 1). This would imply that physicians in more highly
concentrated private insurance markets would be more responsive to differential Medicare reim-
bursement, as Medicare differentials translate more directly to private prices. However, as noted
in Barrette et al. (2020), countervailing market power by insurance companies may offset the in-
creases in price that come from higher concentration in the provider markets. This means that the
financial returns from selecting a larger group may be lower in markets with powerful insurance
companies, and thus it is possible that physician practice choice may be less responsive in High-
HHI insurance markets.31 To test which effect dominates, I divide my High-Impact Sample into
physicians who are assigned to borders with above- and below-median market concentration and
perform separate regressions on each sample.32 The results, displayed in Figure 8 Panels C and
D, show that physicians in highly concentrated markets are more responsive to Medicare pricing
policy, suggesting that the tighter relationship of private and Medicare prices in these markets may
dominate any loss in incremental bargaining power gains from consolidation.

6 Discussion

This paper finds that Medicare payments affect practice structure choice among primary care
physicians. Specifically, I find that a 1 percent higher payment rate leads to a 1.7-2.2 p.p. increase
in the fraction of primary care doctors affiliated with small practice groups. Further investigation
of practice size distribution finds that a 1 percent higher reimbursement rate increases the share of
doctors in 1-2 provider groups by 1.8 percentage points and decreases the share in very large groups
(≥ 150 providers) by 1.9 percentage points.

While addressing the welfare impact of these changes is beyond the scope of this paper, it is
worthwhile to discuss the implications of larger group sizes on private prices for medical services,

30In a related analysis, I also separately consider responses for the two largest primary care specialties: Internal
Medicine and Family Practice. Given that Internal Medicine physicians generally have a larger share of Medicare ben-
eficiaries (roughly 49% more per the 2010-2015 National Ambulatory Medical Care Surveys), it is expected that they
would exhibit a stronger response to differential reimbursement. The results of the analyses displayed in Appendix
Figure A13 Panels A and B, confirm this: the RD-IV point estimate is approximately 61% larger for Internal Medicine
physicians than for Family Practice doctors (although it should be noted that these estimates are not statistically differ-
ent at traditional levels). I also consider other types of physician heterogeneity (Panels C through H of Figure A13) and
find little other evidence of differential response. See Appendix Section C for further discussion.

31This would be formally characterized by θHigh HHI
s ≥ θLow HHI

s , where values of θs that are more negative represent
larger shifts toward the insurers’ reservation price.

32Market concentration is determined using CBSA-level measures of HHI obtained from American Medical Associa-
tion (2016). These CBSA-level estimates are mapped to the border level via a weighted average based on the number of
physicians within a bandwidth-distance of the border that are in a given CBSA.
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achieved through higher levels of bargaining power.33 To do so, I relate select measures of group
size to the Herfindahl-Hirschman Index (“HHI”), the most common metric used to study market
power.34 I begin by constructing a measure of HHI by using a similar method to Dunn and Shapiro
(2014), who use fixed travel-time HHI (“FTHHI”) to assess market power in physician markets.
I calculate the market share for each Census tract by first weighting each provider based on a 20-
minute travel-time distance from the population-weighted centroid of that Census tract.35 I then
aggregate providers within the same group, and divide by the total number to obtain each group’s
Census-tract level market share:

sg =

∑
j∈J(g)wj∑

f∈F
∑

j∈J(f)wj
, (14)

where j indicates a provider and wj the associated weight; J(g) represents the set of providers
affiliated with group g; and F is the set of all firms in the market. These shares are then used
to calculate the FTHHI for each Census tract, which form the basis of the population-weighted
average FTHHI for each locality border.

I then relate the mean FTHHI to two measures: (i) the market-level fraction of providers in
small groups (the main outcome); and (ii) the market-level fraction of providers in groups of 1-2.
The latter measure was chosen because it is the best predictor of FTHHI among my statistically
significant distributional results (see Appendix Figure A14). There is a strong linear relationship
between group size measures and FTHHI: a 1 p.p. increase in the fraction of small groups corre-
sponds to a 2.2% decrease in FTHHI, whereas a 1 p.p. increase in the fraction of 1-2 provider groups
corresponds to a 5.4% decrease in FTHHI. Using these relationships, along with the estimated price
increase from a 1% increase in FTHHI from Dunn and Shapiro (2014) and the estimates from Sec-
tion 5, I calculate that a 1% decrease in Medicare prices induces a 0.15% - 0.50% increase in private
market prices due to increased market power.36 Given the size of the privately financed portion of
the primary care services market ($60 billion), this translates to a $90 - $290 million annual trans-
fer from insurance companies to medical providers, compared to $280 million in cost savings for
Medicare, before accounting for other margins of response to Medicare payment.37 Additionally,

33Given the changes in physician responses, welfare analysis would require an evaluation of the health impacts, if
any, stemming from those responses. As noted in the introduction, the evidence on the health benefits of larger and
vertically integrated practices is mixed, with some (Epstein et al., 2010; Baker et al., 2019) arguing that larger practices
have health benefits, while others do not find any evidence of health improvements (e.g., Scott et al., 2017) or negative
health effects (Short and Ho, 2019).

34I am unable to directly assess the impact of differential Medicare payments on HHI because it is a market-level
measure, whereas my treatment and control providers are all in the same market by construction.

35Weighting for provider j is done according to the formula, wj = max{1− (dj/d̄), 0}, where dj is the distance of the
provider from the centroid and d̄ is the 20-minute travel-time distance. The equivalent distance for a trip of 20 minutes
was calculated using data from the NHTS.

36Dunn and Shapiro (2014) estimate that a 1% increase in 20-minute FTHHI results in a 0.04% to 0.05% increase in
private prices.

37The size of the private and Medicare markets were derived by multiplying total spending on personal health care
(CMS, 2018) by the estimated fraction of total spending attributable from primary care (Jabbarpour et al., 2019). In addi-
tion to holding other responses fixed, this calculation also makes the critical assumption that my results are generalizable
to a nationwide decrease in Medicare payments. It is also possible that the transfer is overstated, as my calculations do
not account for lower costs from larger groups that may be passed onto insurers.
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Baker et al. (2014) demonstrate that increased vertical integration is associated with higher hos-
pital prices when hospitals own physician practices. Accordingly, to the extent that my estimated
effects on physicians employed by the largest groups represents a change in hospital ownership
of physician practices, price decreases could also have substantial cost spillovers in the inpatient
market as well.38

In summary, changes in practice structure stemming from lower Medicare prices have the po-
tential to lead to higher private-market prices for both physician and hospital services. Depending
on the incidence of these price changes, a substantial degree of savings from cuts in Medicare re-
imbursement could be borne by privately insured individuals in the form of higher out-of-pocket
medical costs and health insurance premiums.

38Given the size of the private hospital market ($427B per CMS, 2018), even small effects on vertical integration could
impose large spillovers in relation to cost savings by Medicare. For instance, given that a 1 p.p. increase in vertical
integration results in 0.137% increase in price (Appendix Table 2 of Baker et al., 2014), only a 0.47 p.p. increase in
vertically integrated physicians would be required to match the naive Medicare cost savings from a 1% decrease in
Medicare prices. Such an estimate is well within the range of possibility, based on the results displayed in Figure 6.
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A Variations of the Theoretical Model

The model in Section 3 makes several simplifications for purposes of clarity and tractability. Ac-
cordingly, the purpose of this Appendix Section is to test the model’s sensitivity to these assump-
tions, particularly those regarding intensive-margin quantity responses to differential prices. This
will be done in two ways: (1) by maintaining the original model, with an additional assumption
that Medicare quantity responds positively to price differences and (2) deriving a model with joint
choices of practice size and Medicare quantity.

Preliminaries. Recall the following equations from Section 3:

max
s
u(s) = v(π(s))− w(s) subject to (A1)

π(s) = po(s) · qo + pm · qm −mc(s) · (qm + qo) (A2)

po(s) = (1− θ(s)) · pins + θ(s) · pm, (A3)

which produce the comparative static of Medicare prices, pm, on group size, s:

ds

dpm
= −vπππsπp

m + vππspm

uss
< 0 (A4)

The sign of the equation above is based the increasing and concave nature of utility, as well as the
following conditions derived from the model:

πs = posq
o −mcs(qm + qo) (A5)

= −θs(pins − pm)qo −mcs(qm + qo) > 0

πpm = θ(s)qo + qm > 0 (A6)

πspm = θsq
o < 0. (A7)

Original Model + Increasing Quantity Assumption. To consider how quantity responses might
affect model predictions, first I allow Medicare quantities to respond positively to Medicare prices
(formally, qmp > 0), as shown empirically in Clemens and Gottlieb (2014).1 Such an assumption
would leave vππ, vπ, uss, and πs unchanged. The affected terms would now include:

πpm = πorigpm + (pm −mc)qmp > 0 (A8)

πspm = πorigspm −mcsqmp ≷ 0, (A9)

where πorigpm and πorigspm represent the values in Equations A6 and A7, respectively. The sign for πpm is
the same as in the original model, under the weak assumption that the marginal Medicare patient
is profitable (pm −mc > 0). However, the sign for πspm is now technically ambiguous, as the term

1Private quantities are assumed to be unresponsive to Medicare prices for clarity of exposition.
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−mcsqmp is positive. Despite the ambiguous term, it is unlikely that this term is sufficiently influ-
ential as to change model predictions due to its small probable magnitude. Empirical evidence on
cost savings from mergers and organizational size increases suggest (at best) modest cost savings
(see, for instance, Craig et al. 2018). When these marginal cost savings are interacted with known
intensive-margin quantity responses (with elasticities of approximately 1-2%), they are unlikely
to result in decision-altering quantities. Accordingly, the predictions of the augmented model are
likely unchanged from the baseline.

Model with Endogenous Choice of Quantity. I next expand the model to allow physicians to
choose the intensive-margin quantity of services delivered to patients (which implicitly assumes
that physicians induce demand as agents of patients). In response to changing quantity, physicians
also incur non-financial disutility, represented by h(q), due to the cost of inducement. Formally,
the physician solves:

max
s,qm

u(s, qm) = v(π(s, qm))− w(s)− h(qm) subject to (A10)

π(s, qm) = po(s) · qo + pm · qm −mc(s) · (qm + qo) (A11)

po(s) = (1− θ(s)) · pins + θ(s) · pm, (A12)

where the assumptions from the previous model remain, except that w(s) is assumed to be linear
(for simplicity) and h(q) is assumed to be increasing in q.2 The first order conditions of this model
are:

∂u(s)

∂s
= 0⇔ vππs − ws = 0 (A13)

∂u(s)

∂qm
= 0⇔ vππqm − hqm = 0. (A14)

Combining first order conditions to obtain:

φ(s, qm) = wsπqm − hqmπs (A15)

and totally differentiating to obtain the comparative static of Medicare prices, pm, on group size, s,
yields:

ds

dpm
= −

∂φ(s,qm)/∂pm

∂φ(s,qm)/∂s
= − wsπqmpm − hqmπspm

wssπqm + wsπsqm − hqmπss
. (A16)

Based on the assumptions of the model, signs of each component of the comparative static are as
2As before, private quantities are fixed for clarity of exposition.
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follows:

ws, hqm > 0 (A17)

wss = 0 (A18)

πqmpm = 1 (A19)

πspm = θsq
o < 0 (A20)

πsqm = −MCs > 0 (A21)

πss = posq
o −mcss(qm + qo) (A22)

= −θss(pins − pm)qo −mcss(qm + qo) > 0. (A23)

Accordingly, the sign of Equation A16 is:

ds

dpm
< 0, (A24)

which is the same prediction given by the original model.
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B Sample Construction

The primary datasets used for my analysis are as follows:

1. Medicare Physician and Other Supplier Public Use File. This dataset supplies provider-
level data for all providers who treat more than 10 Medicare patients in a given year. The
data includes information detailing the exact addresses, summary information on patients
treated—including average age and average hierarchical condition category score, which
measures patient health—and provider characteristics such as certification (ex. Medical Doc-
tor, Doctor of Osteopathic Medicine) and primary specialty type. The detail file also includes
service-level detail regarding procedures by the provider in a given year. Relative value units
were assigned to each service by merging in the 2015 Physician Fee Schedule’s Relative Value
files obtained from CMS. The source data for utilization and patient-population character-
istics are derived from the CMS Chronic Conditions Warehouse, a database with 100% of
Medicare enrollment and fee-for-service claims data. Provider characteristics and address
are obtained from the National Plan and Provider Enumeration System (“NPPES”). Accord-
ing to NPPES guidelines, any address changes must be communicated by providers within
30 days of the change.

2. Medicare Physician Compare Data. This dataset is used to gather physician-level infor-
mation regarding group practice affiliation, the size of associated medical groups, medical
school attended, and year of medical school graduation. Medical school rankings were ob-
tained using the methodology detailed in Schnell and Currie (2018), and provider experience
variables were generated by subtracting the current year (2015) from the date of medical
school graduation. The source data for Physician Compare variables is the Provider Enroll-
ment, Chain, and Ownership System (“PECOS”), which is Medicare’s enrollment and reval-
idation system. Group practice affiliation is determined based on the tax identification num-
ber that is associated with a given physician’s NPI. Accordingly, it is possible for providers
to have multiple affiliations in the Physician Compare data, which is true for roughly 14% of
providers in my sample. I assign providers to their smallest practice under the assumption
that larger practices are more likely to be included only due to practice privileges and are
therefore not the providers’ main practice. As discussed in Section C, this assumption does
not meaningfully affect my estimates.

3. Medicare Physician Fee Schedule. This dataset provides detail regarding geographic ad-
justment factors by locality, RVUs-by-HCPCS code, and zip-to-locality crosswalks. I use the
zip-to-locality crosswalks to form locality borders, defined by adjacent zip codes that are as-
signed different geographic adjustment factors. Physicians are paid using the geographic
adjustment factors that correspond to their practice address.

4. Census Data. I obtained local data on the Census-block-group level using 2011-2015 ACS
5-year estimates from the U.S. Census Bureau and IPUMS (Ruggles et al., 2019). This data
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includes the following variables, which were used as “local” controls in my analysis:

(a) Percentage of population in given age bins (less than 65, 65-69, 70-74, 75-79, 80-84, and
84-plus);

(b) Percentage of population by education level (less than high school, high school, some
college, college or more);

(c) Percentage of population by insurance coverage (uninsured, Medicare only, Medicaid
only, other insurance only, Medicare+Medicaid, Medicare+Private Insurance);

(d) Median household income;

(e) Median home value; and

(f) Mean population density.

5. Spatial Data. Geographic shapefiles (State- and ZCTA-level) were obtained from the U.S.
Census.

Using this data, the main sample construction was as follows:

1. The ZCTA-level shapefiles and zip-to-locality crosswalk were utilized to create locality ge-
ographies in ArcGIS. Locality borders were then generated for each combination of within-
state adjacent localities (i.e. no cross-state borders were used). Borders that corresponded
with large rivers were also omitted, as other characteristics would likely not evolve smoothly
across the boundary in these instances.

2. Physician addresses from the Physician and Other Supplier Public Use File were geocoded
using Texas A&M GeoServices. Then the shortest straight-line distance was calculated be-
tween each border and candidate border point within 10 miles.

3. The Physician and Other Supplier Public Use Variables and Physician Compare variables
were combined. Only primary care physicians were retained.3 Next, I dropped all physi-
cians that had outlier geocoordinates (i.e. those outside of the boundaries of their listed zip
code) and physicians who practice in nine-digit zip codes that had a different locality than
their respective five-digit zip code were also dropped. Finally, I keep only providers who are
within one bandwidth of the border.

4. Only borders that have 5 providers on each side of the boundary were maintained.

5. I also created “clusters” of physicians in each border to more finely control for the spatial
characteristics of providers (see Table 1, Column 4). To do so, I utilized k-means clustering
separately for each border based on physician longitude and latitude. The algorithm was set

3Primary care physicians included those who listed their specialties as: Family Practice, General Practice, Geriatric
Medicine, Internal Medicine, Osteopathic Manipulative Medicine, Pediatric Medicine, or Preventive Medicine. Among
these primary care physicians, over 95% listed Family Practice or Internal Medicine as their specialty.
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to create one cluster for every fifty physicians within the bandwidth’s length of the border
(rounded up). After the initial clusters were determined, clusters were divided into “good”
clusters—defined as those with 5 physicians on either side of the boundary—and “bad” clus-
ters. The physicians in bad clusters were re-assigned to the nearest good cluster. An illus-
tration of these clusters is displayed in Appendix Figure A4, which recreates the map from
Figure 1(b) with the points for each physician and different clusters denoted by a shape-color
combination.

This procedure results in the sample of providers that I use for my main analysis. I also repeat
the procedure in Steps #3 and #4 for all multiples of bandwidth used in my Section 5.2 bandwidth
analysis. Finally, I assign controls to each physician based on characteristics of the surrounding
Census block groups. Specifically, I calculate an inverse-distance weighted average of character-
istics using block groups with centroids within two miles of a given physician’s location that are
also in the same payment locality.
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C Additional Figures and Tables

A description of the analyses performed in this section are as follows:

• Figure A1. This figure displays other measures of bunching to supplement the analysis in
Section 4.2. See text of that section and figure notes for more detail.

• Figure A2. In addition to the analysis displayed in Figure 4 and discussed in Section 4.2, I also
show how specific characteristics vary across the cutoff, both on the physician- and block-
group-level. Panels A and C display the physician- and block-group-level results for the
High-Impact Sample, respectively: of the 22 outcomes examined, only 1 achieves traditional
levels of statistically significance, which is roughly the rate expected for incorrectly rejecting
the null hypothesis. To emphasize that this single significant result is likely spurious and
not a result of intentional sorting, I also present results for a ”Low-Impact” Sample, i.e. the
borders that have GAF differences of less than 2 percent. As displayed in Panels B and D,
there are several characteristics that achieve statistical significance, despite the substantially
lower degree of treatment (and thus reduced incentives for physicians to sort around the
cutoff).

• Figure A3. This figure recreates Figure 5 when no adjustments for border-fixed effects are
included and achieves qualitatively similar (though slightly larger) effects.

• Figure A4. This figure recreates Figure 1B, with overlaid points representing the location
of physicians. Each color-shape combination represents a different physician cluster—see
Appendix Section B and figure notes for more detail.

• Figure A5. This figure displays results that are analogous to those displayed in Figure 6B,
but where Yip = 1(g < GroupSize ≤ g′), where g and g′ represent points the distribution of
group sizes (i.e. these points represent the effects on the PDF, rather than CDF).

• Figure A6. This figure displays regression discontinuity plots for other measures of group
size discussed in Section 5.1. See that section and figure notes for more detail.

• Figure A7. This figure considers two other ways that physician treatment behavior may change
in response to differential payment. The first row (Panels A and B) represents per-patient uti-
lization (i.e. the intensive-margin treatment decision) and the second row (Panels C and D)
display the number of Medicare patients treated per physician (i.e. the extensive-margin
treatment decision). Due to the imprecision of the estimates in the left-hand columns, addi-
tional controls were included in the right-hand specifications to reduce noise. (Specifically, a
control for the predicted level of the outcome, where the prediction is generated from a LASSO
design.) While the intensive-margin results do not achieve traditional levels of statistical sig-
nificance (p = 0.115 in my most precise specification), the estimated effect of a 1.7-1.8 percent
increase in resource intensity (measured by log relative value units per patient) in response
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to a 1% change in reimbursement is generally in-line with recent literature on supply-side re-
sponse to financial incentives (Clemens and Gottlieb, 2014). Likewise, I do not find any statis-
tically significant effects on extensive-margin treatment decisions (measured by log Medicare
patients treated), consistent with the literature on the subject.4 Nonetheless, the 95% confi-
dence interval for my precise specification rules out responses larger than a 1.1% increase in
Medicare beneficiaries treated in response to a 1% change in reimbursement. To frame this
in terms of potential reductions in Medicare prices, my result suggests that modest decreases
in reimbursement would not limit primary care access for Medicare beneficiaries.

• Figure A8. This figure displays regression discontinuity plots for two other measures of
practice structure, practice location size (Panel A) and log group size (Panel B). See Section
5.1 for further discussion.

• Figure A9. This figure exhibits sensitivity of estimates to the effects of individual borders
by performing a “leave-one-out analysis” — i.e. re-estimating Equations 10 and 11 with all
observations assigned to the listed border omitted from the sample. A shown in the figure,
no individual border seems to exhibit substantial influence on the estimates.

• Figure A10. The purpose of this figure is to perform additional robustness checks of my main
analysis:

– “Cluster level” section: explores alternatives to the tract-level clustering strategy in the
main specification.

– “Kernel choice” section: details alternative kernel choices to the rectangular kernel used.

– “Distance function” section: examines a different functional form for distance controls
(linear was used in the main specification).

– “Drop medical centers” line: tests robustness to omission of areas of significant provider
density. While medical centers are not explicitly indicated in the data, I proxy for them
by tabulating the number of providers in grids that are roughly one-third square mile
in area (1/100th of a degree of longitude and latitude). I then omit observations from
the analysis at the 99th percentile of provider-density among the grids.

– “Drop phys. assigned to>1 borders” line: physicians that were within one bandwidth-
distance of multiple borders were assigned to more than one locality-border (roughly
4% of my sample meets this criteria). This line tests robustness to that sample construc-
tion choice by dropping these providers.

– “Drop phys. w/ >1 affiliation” line: roughly 10% of doctors in my sample report more
than one group affiliation. As part of sample construction, I assigned the smallest listed

4Clemens and Gottlieb (2014) also are unable to detect any change in the number of patients treated in their setting.
In contrast, Alexander and Schnell (2019) argue that an increase in Medicaid reimbursement for primary care services
meaningfully increased healthcare access for Medicaid beneficiaries. However, because Medicaid reimbursements are
substantially less generous than those for Medicare (Zuckerman et al., 2017), estimates of access from this paper are
most relevant for fee structures that meet or exceed Medicare’s generosity.
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group size to these physicians; this tests robustness to that choice by dropping providers
with multiple affiliations.

– “Drop zip-centroid geocodes” line: certain providers could only be geocoded based on
the centroid of their associated zip code (rather than their exact address). Given that
these providers are more likely to have a mis-measured location, they are dropped as a
robustness check.

– “Specialty group FE” line: in order to more finely control for differences in physician
type, I add fixed effects for each major group: Family Practice, Internal Medicine, and
Other Primary Care (the Other Primary Care category covers roughly 4% of physicians
in my sample).

– “Border-specific spatial controls” line: adds more detailed controls for distance by al-
lowing linear distance controls to vary by each border.

As displayed in the figure, none of these robustness procedures changed the qualitative na-
ture of my estimates and, in most cases, resulted only in extremely small changes to the co-
efficient and/or standard errors.

• Figure A11. This figure recreates Figure 5 when the full sample of borders are included. See
Section 5.3 for more detail.

• Figure A12. This figure recreates Figure 6 (Panel A) and Appendix Figure A5 (Panel B)
when the full sample of borders are included and the RD-Border Estimation (Equations 12
and 13) are used. See Sections 5.1 and 5.3 for more detail.

• Figure A13. The purpose of this figure is display heterogeneity in physician characteristics
through a series of separate equations:

– The first row displays heterogeneity by physician specialty. Given that internal medicine
practice physicians generally have a larger share of Medicare beneficiaries (roughly 49%
more per the 2010-2015 National Ambulatory Medical Care Surveys), it is expected that
they would exhibit a stronger response to differential reimbursement. Panels A and
B of the figure confirm this: the RD-IV point estimate is approximately 61% larger for
internal medicine physicians than for family practice doctors (although it should be
noted that these estimates are not statistically different at traditional levels).

– The second row divides the sample by whether the physician attended a ranked medical
school or not. There do not appear to be meaningful differences in these estimates.

– The third row divides the sample by whether the physician has over/under twenty years
of experience (proxied by the years between 2015 and their medical school graduation).
While the RD-IV point estimates are slightly different, they are not statistically distin-
guishable. (It should also be noted that experience could simply be a proxy for gender
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or vice versa: the male physicians comprised 69% of those with 20+ years of experi-
ence, while female physicians represented 55% of those with fewer than 20 years. This
is consistent with the results of the next row.)

– The fourth and final row divides the sample by physician gender. Again, while the RD-
IV point estimates are slightly different, they are not statistically distinguishable.

• Figure A14. The purpose of this figure is display how well group size measures can be used
to predict log fixed travel HHI (“FTHHI”). See text of Section 6 and figure notes for more
detail.

• Table A1. This table reports all payment localities that receive different physician fee sched-
ule payments than their respective states. See Figure 1(a) for more information.

• Table A2. This table reports coefficients for other physician practice style outcomes for dif-
ferent samples and instrumental variables. See discussion previous discussion of Appendix
Figure A7 in this section for more detail regarding outcomes.
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(B) Practice Locations

Figure A1: Validation of Research Design: Alternate Measures of Spatial Provider Density

Notes: The purpose of this figure is to illustrate the absence of bunching around locality boundaries using alternate measures to those
presented in Figure 3. Panel A is analogous to Figure 3B, except with log physicians per thousand as an outcome measure. Panel B
similarly replaces the outcome so that each point is a practice location, rather than an individual physician. This analysis utilizes the
High-Impact Sample discussed in Section 2.2.

Source: Author calculations using CMS Physician Fee Schedule and CMS Physician and Other Supplier Public Use File.
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Physician gender (1=female)
Attended ranked medical school
Medical school ranking | ranked

Physician credential (1=m.d.)
Experience (in years)

% patients who are female
Average age of patients

Average HCC score of patients
% patients who are dually-enrolled

% patients who have arthritis
% patients who have depression

% patients who have diabetes
% patients who have heart disease

% patients who have hyperlipidemia
% patients who have hypertension

Provider characteristics:

Patient pop. characteristics:

-.5 -.25 0 .25 .5 -.5 -.25 0 .25 .5

(A) High-Impact
Sample

(B) Low-Impact
Sample

Size of Discontinuity (in Standard Deviations)

% Non-white

% Age ≥ 65

Log median income

Log median home value

% Uninsured

% w/ Medicare + other insurance

% College educated

Block-group characteristics:

-.2 -.1 0 .1 .2 -.2 -.1 0 .1 .2

(C) High-Impact
Sample

(D) Low-Impact
Sample

Size of Discontinuity (in Standard Deviations)

Figure A2: Validation of Research Design: Covariate Balance Tests

Notes: The purpose of this figure is to illustrate the response of selected covariates to boundary differences in Medicare reimbursement.
The top panels (A and B) display provider-level regressions for provider and treated-patient-population-level characteristics, for the
High-Impact Sample (borders with differences of at least two percent points) and the Low-Impact Sample (borders with differences
less than two percent points), respectively. The bottom panels (C and D) display Census-block-group level regressions for local char-
acteristics for High- and Low-Impact Samples, respectively. All variables have been normalized and used as an outcome measure in
Equation 8 (i.e., these are discontinuities that have not been scaled by the related payment discontinuity). Bars displayed represent
90% confidence intervals. See Appendix Section C for further discussion of this figure.

Source: Author calculations using CMS Physician Fee Schedule, CMS Physician Compare Data, CMS Physician and Other Supplier
Public Use File, Census Block Group 5-year ACS Estimates (Ruggles et al., 2019).
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Figure A3: Main Results: Without Border FE

Notes: The purpose of this figure is to recreate the analysis displayed in Figure 5 when no adjustments for border fixed effects are
included. See notes to Figure 5 for more detail.

Sources: Author calculations using CMS Physician Fee Schedule, CMS Physician Compare Data, CMS Physician and Other Supplier
Public Use File.
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4.3% Higher than State Baseline
3.1% Higher than State Baseline
State Baseline

Figure A4: Localities in the Dallas-Fort Worth Area (Physician Clusters)

Notes: The purpose of this figure is to illustrate the physician clusters used analyses employing cluster-by-border fixed effects (discussed
further in Section 4). Each shape-by-color combination represents a different set of physicians that are grouped together. Use of border-
by-cluster fixed effects effectively forces comparisons within these physician groups. See notes to Figure 1(b) for further description of
the underlying map characteristics. See notes to Appendix Section B for more detail on how these clusters were constructed.

Sources: Author calculations using CMS Physician Fee Schedule, CMS Physician and Other Supplier Public Use File.
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Figure A5: Distributional Effects on Group Size

Notes: The purpose of this figure is to display results that are analogous to those displayed in Figure 6B, but where Yip = 1(g <
GroupSize ≤ g′), where g and g′ are points in the distribution of group sizes. Coefficient estimated, presented along with 90%
confidence intervals, show the impact of a 1 percent difference in Medicare reimbursement is associated with a δ p.p. change in the
displayed probability.

Source: Author calculations using CMS Physician Fee Schedule, CMS Physician Compare Data, and CMS Physician and Other Supplier
Public Use File.
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Figure A6: Distributional Results: Effects on Smallest and Largest Groups

Notes: The purpose of this figure to is present regression discontinuity plots analogous to Figure 5 for two other measures of group
size. Panel A represents the impact of differential payments on the smallest groups (1-2 providers) while Panel B displays the results
for the largest groups (150 providers or more). See Figure 5 for more detail on the structure of these plots.

Sources: Author calculations using CMS Physician Fee Schedule, CMS Physician Compare Data, CMS Physician and Other Supplier
Public Use File.
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Figure A7: Other Results: Treatment Outcomes

Notes: The purpose of this figure to is present regression discontinuity plots analogous to Figure 5 for measures of physician practice
style. See Appendix Section C for further discussion and Figure 5 for more detail on the structure of these plots.

Sources: Author calculations using CMS Physician Fee Schedule, CMS Physician Compare Data, CMS Physician and Other Supplier
Public Use File.
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Figure A8: Other Results: Other Practice Structure Outcomes

Notes: The purpose of this figure to is present regression discontinuity plots analogous to Figure 5 for other measures of practice
structure. See Section 5.1 for further discussion and Figure 5 for more detail on the structure of these plots.

Sources: Author calculations using CMS Physician Fee Schedule, CMS Physician Compare Data, CMS Physician and Other Supplier
Public Use File.
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Main Estimate
North SF Bay Area  -  Rest of CA

Oakland Area - Santa Clara
Los Angeles - Rest of CA

Orange - Rest of CA
DC Suburbs (MD) - Baltimore

DC Suburbs (MD) - Rest of MD
DC Suburbs (VA) - Rest of VA

Miami - Ft. Lauderdale
Ft. Lauderdale - Other FL

Atlanta - Rest of GA
Chicago Suburbs - Rest of IL

Southern ME - Rest of ME
Baltimore - Rest of MD

Boston - Rest of MA
Detroit - Rest of MI

St. Louis - Rest of MO
Kansas City - Rest of MO
Northern NJ - Rest of NJ

NYC Suburbs - Poughkeepsie
Poughkeepsie - Rest of NY

Portland - Rest of OR
Philadelphia - Rest of PA

Brazoria - Rest of TX
Dallas - Rest of TX

Houston - Rest of TX
Fort Worth - Rest of TX

Austin - Rest of TX
Seattle - Rest of WA

0 1 2 3 4 5

Main estimate
Robustness estimate

Figure A9: Border Leave-one-out Analysis

Notes: This figure exhibits sensitivity of estimates to the effects of individual borders. Accordingly, each coefficient presented represents
a separate regression of the preferred specification of Equations 10 and 11 with the listed border name omitted from the sample. Bars
indicate 90% confidence intervals.

Sources: Author calculations using CMS Physician Fee Schedule, CMS Physician Compare Data, CMS Physician and Other Supplier
Public Use File, Census Block Group 5-year ACS Estimates (Ruggles et al., 2019).
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Main estimate

County
Zip code

Census block group

Triangular
Epanechnikov

Quadratic

Drop medical centers
Drop phys. assigned to >1 borders

Drop phys. w/ >1 affiliation
Drop zip-centroid geocodes

Specialty group FE
Border-specific spatial controls

Cluster level:

Kernel choice:

Distance function:

Sample restrictions:

Additional controls

-2 0 2 4 6

Main estimate Robustness estimate

Figure A10: Other Robustness Checks

Notes: The purpose of this figure is to perform additional robustness checks of my main analysis. Each point represents a separate
regression of the preferred specification of Equations 10 and 11 with the listed modification. Bars indicate 90% confidence intervals.
See the text of Appendix Section C for description of each robustness test.

Sources: Author calculations using CMS Physician Fee Schedule, CMS Physician Compare Data, CMS Physician and Other Supplier
Public Use File, Census Block Group 5-year ACS Estimates (Ruggles et al., 2019).
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Figure A11: Main Results: Full Sample

Notes: The purpose of this figure is to recreate the analysis displayed in Figure 5 when all borders are included. See discussion in
Section 5.3 and notes to Figure 5 for more detail.

Sources: Author calculations using CMS Physician Fee Schedule, CMS Physician Compare Data, CMS Physician and Other Supplier
Public Use File.
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Figure A12: Distributional Effects on Group Size

Notes: The purpose of this figure is to recreate Figure 6 (Panel A) and Appendix Figure A5 (Panel B) when the full sample of borders
are included and the RD-Border Estimation (Equations 12 and 13) are used. See Sections 5.1 and 5.3 and notes to referenced figures
for more detail.

Source: Author calculations using CMS Physician Fee Schedule, CMS Physician Compare Data, and CMS Physician and Other Supplier
Public Use File.

52



-0.30

-0.15

0.00

0.15

0.30

-4 -3 -2 -1 0 1 2 3 4

θFS = 0.047 
δIV = 2.918 
     (1.587)

δ = 0.138 
     (0.073)

(A) Internal Medicine     

-0.30

-0.15

0.00

0.15

0.30

-4 -3 -2 -1 0 1 2 3 4

θFS = 0.053 
δIV = 1.814 
     (1.315)

δ = 0.097 
     (0.070)

(B) Family Practice     

-0.30

-0.15

0.00

0.15

0.30

-4 -3 -2 -1 0 1 2 3 4

θFS = 0.051 
δIV = 2.161 
     (1.618)

δ = 0.110 
     (0.082)

(C) Ranked Med. School     

-0.30

-0.15

0.00

0.15

0.30

-4 -3 -2 -1 0 1 2 3 4

θFS = 0.051 
δIV = 1.974 
     (1.088)

δ = 0.101 
     (0.055)

(D) Unranked Med. School     

-0.30

-0.15

0.00

0.15

0.30

-4 -3 -2 -1 0 1 2 3 4

θFS = 0.053 
δIV = 2.317 
     (1.207)

δ = 0.122 
     (0.062)

(E) Experience >20 Years     

-0.30

-0.15

0.00

0.15

0.30

-4 -3 -2 -1 0 1 2 3 4

θFS = 0.050 
δIV = 1.664 
     (1.281)

δ = 0.083 
     (0.064)

(F) Experience ≤ 20 Years     

-0.30

-0.15

0.00

0.15

0.30

-4 -3 -2 -1 0 1 2 3 4

θFS = 0.051 
δIV = 2.435 
     (1.190)

δ = 0.125 
     (0.060)

(G) Male     

-0.30

-0.15

0.00

0.15

0.30

-4 -3 -2 -1 0 1 2 3 4

θFS = 0.050 
δIV = 1.807 
     (1.260)

δ = 0.091 
     (0.064)

(H) Female     

%
 P

hy
si

ci
an

s 
in

 S
m

al
l G

ro
up

Distance from Boundary (in Miles)

Figure A13: Heterogeneity by Physician Characteristics

Notes: The purpose of this figure is display heterogeneity of results by physician characteristics. Within each panel, reduced-form
estimates (Equation 8) and associated standard errors are in the upper-right corner, while the first-stage (Equation 11) and RD-IV
estimate (δIV , from Equation 10) and associated standard errors are in the bottom-right corner. See discussion in Appendix Section C
for more detail.

Sources: Author calculations using CMS Physician Fee Schedule, CMS Physician Compare Data, CMS Physician and Other Supplier
Public Use File.
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Figure A14: Prediction of Log FTHHI by Group Size Measure

Notes: The purpose of this figure is display how well group size measures can be used to predict log fixed travel HHI (“FTHHI”).
Panel A utilizes the main outcome, % of providers in a small group (defined as 25 providers or fewer), while Panel B utilizes the
best predictor among the statistically significant distributional results, the % of providers in groups of 1-2. Each point of the graph
represents a binned decile of predicted log FTHHI.

Sources: Author calculations using CMS Physician Fee Schedule, CMS Physician Compare Data, CMS Physician and Other Supplier
Public Use File, Census Tract 5-year ACS Estimates (Ruggles et al., 2019).
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Table A1: Medicare-Designated Payment Localities

State Metro Area or County State Metro Area or County State Metro Area or County

California Marin/Napa/Solano Illinois Suburban Chicago New York Queens
California San Francisco Illinois Chicago Oregon Portland
California San Mateo Louisiana New Orleans Pennsylvania Metro Philadelphia
California Oakland/Berkley Maine Southern Maine Texas Brazoria
California Santa Clara Maryland Baltimore/Surr. Ctys Texas Dallas
California Ventura Massachusetts Metro Boston Texas Galveston
California Los Angeles Michigan Detroit Texas Houston
California Anaheim/Santa Ana Missouri Metro St. Louis Texas Beaumont
District Of Columbia DC + MD/VA Suburbs Missouri Metro Kansas City Texas Fort Worth
Florida Fort Lauderdale New Jersey Northern NJ Texas Austin
Florida Miami New York Manhattan Washington Seattle (King County)
Georgia Atlanta New York NYC Suburbs
Illinois East St. Louis New York North NYC Suburbs

Notes: This table reports all payment localities that receive different physician fee schedule payments than their respective states. See
Figure 1(a) for more information. Note that some areas listed here are not included in Figure A9 as certain borders did not have any
points meeting the criteria discussed in Section B.

Sources: CMS Physician Fee Schedule.
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Table A2: Alternate Results: Treatment Outcomes

Outcomes (1) (2) (3) (4)

Log RVUs per patient 1.723 1.894 1.288 1.242
(1.878) (2.250) (1.438) (1.421)

Log unique patients -2.146 1.117 -1.062 -0.891
(2.282) (2.836) (1.829) (1.798)

Sample High Impact Full High Impact Full
Instrumental variable RD-IV RD-IV RD-Border RD-Border
Observations 5,065 9,685 5,065 9,685
First stage F-statistic 399 148 7,468 5,920

Notes: This table recreates the analysis in Table 2 for physician practice style variables. See Section C for further discussion of these
variables and Section 5.3 for further discussion of alternate samples and instrumental variables. See also Table 2 for more information
on table structure.

Source: Author calculations using CMS Physician Fee Schedule, CMS Physician Compare Data, CMS Physician and Other Supplier
Public Use File.
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